
Using Bi-Directional Information Exchange to Improve Decentralized
Schedule-Driven Traffic Control

Hsu-Chieh Hu and Stephen F. Smith
Carnegie Mellon University

Pittsburgh, PA, USA
hsuchieh@andrew.cmu.edu,sfs@cs.cmu.edu

Abstract

Recent work in decentralized, schedule-driven traffic control
has demonstrated the ability to improve the efficiency of traf-
fic flow in complex urban road networks. In this approach, a
scheduling agent is associated with each intersection. Each
agent senses the traffic approaching its intersection and in
real-time constructs a schedule that minimizes the cumula-
tive wait time of vehicles approaching the intersection over
the current look-ahead horizon. In order to achieve network
level coordination in a scalable manner, scheduling agents
communicate only with their direct neighbors. Each time an
agent generates a new intersection schedule it communicates
its expected outflows to its downstream neighbors as a pre-
diction of future demand and these outflows are appended
to the downstream agent’s locally perceived demand. In this
paper, we extend this basic coordination algorithm to addi-
tionally incorporate the complementary flow of information
reflective of an intersection’s current congestion level to its
upstream neighbors. We present an asynchronous decentral-
ized algorithm for updating intersection schedules and con-
gestion level estimates based on these bi-directional informa-
tion flows. By relating this algorithm to the self-optimized
decision making of the basic operation, we are able to ap-
proach network-wide optimality and reduce inefficiency due
to strictly self-interested intersection control decisions.

Introduction
Over half of the world’s population now lives in cities and
global urbanization continues at a steady pace. As this trend
continues, urban mobility is becoming an increasingly crit-
ical problem. In the US cities alone, the cost of congestion
now exceeds $160 Billion in lost time and fuel consump-
tion, and is responsible for release of an additional 50 Bil-
lion pounds of CO2 into the atmosphere (Schrank et al.
2015). It is commonly recognized that better optimization
of traffic signals could lead to substantial reduction of con-
gestion and travel days, yet how to optimize a large trans-
portation network in a responsive but scalable way remains
a problem that continues to attract researchers from different
fields. In urban environments, traffic signal control is still
dominated by the use of fixed timing plans, which are based
on average traffic conditions, and quickly become outdated

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

as flow characteristics evolve over time. To improve mat-
ters, centralized approaches that adjust signal timing plan
parameters (e.g., cycle time, green time split) according to
actual sensed traffic data (Robertson and Bretherton 1991;
Lowrie 1992; Heung, Ho, and Fung 2005; Gettman et al.
2007) have been proposed. However, these approaches are
designed to accommodate continuous gradual change in traf-
fic patterns (typically adjusting parameters after integrating
information for several minutes), and are not responsive to
real-time traffic events and disruptions. Alternatively, de-
centralized online panning approaches have been proposed
(Sen and Head 1997; Gartner, Pooran, and Andrews 2002;
Shelby 2001; Cai, Wong, and Heydecker 2009; Jonsson and
Rovatsos 2011). These approaches solve the problem of
scalability in principle, but have historically had difficulty
computing plans in real-time with a sufficiently long hori-
zon to achieve network-level coordination.

A recent development in decentralized online planning
that overcomes this horizon problem and is capable of real-
time responsiveness is schedule-driven traffic signal control
(Xie, Smith, and Barlow 2012; Xie et al. 2012). The key
idea behind this approach is to formulate the intersection
scheduling problem as a single machine scheduling prob-
lem, where input jobs are represented by a sequence of
clusters consisting of spatially adjacent vehicles (i.e., ap-
proaching platoons, queues). This aggregate representation
enables plans to be generated efficiently with longer horizon
that incorporates multi-hop traffic flow information, and thus
network-wide coordination is achieved through exchange of
schedule information. In operation, an intersection schedul-
ing agent is associated with each intersection as shown in
Figure 1. The goal of each scheduling agent is to allocate
green time to different signal phases over time by computing
a schedule of green phases that minimizes cumulative delay
of approaching clusters, where a signal phase is a compat-
ible traffic movement pattern (e.g., East-West traffic flow).
To collaborate with other agents, at each decision point each
agent receives a projection of expected outflows from its up-
stream neighbors and plugs it into its local computation. Af-
ter starting to execute its schedule, the resulting flows are
communicated to its downstream neighbors. Scalability is
ensured by the fact that scheduling agents only communicate
with their direct neighbors. However, outflow information
(i.e., approaching upstream clusters) can propagate to non-

local neighbors since the look-ahead horizon is extended and
replanning occurs frequently. Results obtained in field ex-
periments have shown significant reductions in travel times,
wait times and number of stops, as well as in projected emis-
sions. (Smith et al. 2013).

Figure 1: Intersection scheduling agents allocate green time
through exchanging information with neighbors in a trans-
portation network.

One potential limitation of this approach, however, stems
from its reliance on one-way flow of demand information
from upstream intersections to downstream intersections.
In cases where downstream intersections are in fact al-
ready congested, uninformed inflow of additional vehicles
toward this intersection can further exacerbate delay and/or
miss opportunities to better move cross street traffic. In ef-
fect, local intersection scheduling agents are optimizing in
a self-interested manner, albeit with greater visibility of fu-
ture demand, and this myopic perspective can compromise
network-level performance.

In this paper, we consider the possibility of improv-
ing network-level performance by augmenting the informa-
tion exchanged between neighboring intersections to include
complementary downstream to upstream flow of congestion
information. Our goal is to use shared cost (i.e., waiting
time of vehicles) to improve the decision-making of each
scheduling agent. The idea is to use estimates of down-
stream congestion cost to influence selfish upstream deci-
sions and with this more global perspective, increase over-
all social welfare (network performance). Decision-making
with shared cost (reward) or states has been proven to be an
effective way to improve multi-agent problem solving per-
formance in other settings (Huang, Berry, and Honig 2006;
Yang and Johansson 2010).

We propose an expanded bi-directional information ex-
change algorithm between intersections that combines for-
ward communication of projected vehicle outflows to down-
stream intersections with backward communication of the
estimated delay for each vehicle to upstream intersections as
a prediction of next-hop costs. This additional information is
incorporated by redefining the local intersection scheduling
objective to include these costs. In situations where traffic
is light, the feedback delay will be small and local intersec-
tion scheduling will proceed as before. However as the net-
work becomes saturated and the cumulative delay of down-

stream neighbors becomes larger, the feedback cost will re-
flect this and lessen the number of vehicles that are sent
downstream in this direction. To ensure scalability, messages
continue to be exchanged only between direct neighbors and
the asynchronous nature of local intersection scheduling is
preserved.

The remainder of the paper is organized as follows. We
first introduce the related work. Next, the problem defini-
tion and the detailed algorithm necessary to achieve better
coordination are presented. Then, an empirical analysis of
the proposed approach is shown. Finally, the conclusions are
drawn.

Related Work
A general review of all past intersection control schemes is
beyond the scope of this paper; we refer readers to the works
by (Shelby 2001) and (Stevanovic 2010) for more compre-
hensive overviews. As mentioned earlier, since the decen-
tralized control schemes have been explored as a means for
increasing number of signals and detectors while maintain-
ing real-time responsiveness, we briefly summarize several
agent-based approaches that optimize traffic flow in a decen-
tralized way.

It is well established that agent-based approaches suit the
decentralized traffic management problem, given newly de-
veloped sensing technologies and historical temporal data,
as well as the frequent and flexible interaction between
the agents and their environment (Dresner and Stone 2008;
Bazzan and Klügl 2014). A common approach related to
control of traffic signals is to let multiple agents learn a pol-
icy for mapping states to actions by monitoring traffic flow
and selecting actions. A Markov Decision Process (MDP)
is a popular means for model this problem (Camponogara
and Kraus 2003). Since the space of state-action pairs grows
exponentially and also depends on discretization of states
and number of intersections, it may not be feasible to solve
the problem optimally according to the real traffic condi-
tion. Hence, instead of solving a large MDP, use of an in-
dependent learner can relax this problem. In (Da Silva et
al. 2006), model-based reinforcement learning is proposed
to deal with dynamic non-stationary traffic flow, although
it still lacks consideration of joint states and joint actions.
Moreover, learning is a time-consuming task and imposes
an overhead on real-time control. It is challenging to learn a
policy to deal with all kinds of traffic conditions in real-time.
Techniques of evolutionary game theory in which agents
perform experimentation and receive a reward that depends
on the neighbors is used in (Bazzan 2005). This approach
becomes time-consuming when many different options of
coordination are possible.

To deal with computational complexity of joint optimiza-
tion, a recent trend is to let agents learn independently but
allow them to interact with each others and combine their
policies or plans. This provides a new trade-off between to-
tal centralization and total independence. Exchange of in-
formation between a group of agents may increase accu-
racy and learning speed at the expense of communication
(Nunes and Oliveira 2004). The work in (Kuyer et al. 2008)

also focuses on exchanging information to benefit rein-
forcement learning and explicit coordination among agents
through a coordination graph. However, this approach leads
to an increase in complexity as the graph becomes larger.
In the field of planning, exchanging information to extend
the horizon is considered in (Sen and Head 1997; Gartner,
Pooran, and Andrews 2002; Xie, Smith, and Barlow 2012;
Xie et al. 2012) as a way to accommodate non-local informa-
tion. In addition, communication with more accurate infor-
mation has been shown to be effective for multi-agent online
planning (Wu, Zilberstein, and Chen 2009).

Schedule-Driven Traffic Control
As indicated above, the key to the single machine schedul-
ing problem formulation of the schedule-driven approach of
(Xie, Smith, and Barlow 2012; Xie et al. 2012) is an aggre-
gate representation of traffic flows as sequences of clusters
c over the planning (or prediction) horizon. Each cluster c is
defined as (|c|, arr, dep), where |c|, arr and dep are num-
ber of vehicles, arrival time and departure time respectively.
Vehicles entering an intersection are clustered together if
they are traveling within a pre-specified interval of one an-
other. The clusters become the jobs that must be sequenced
through the intersection (the single machine). Once a vehi-
cle moves through the intersection, it is sensed and grouped
into a new cluster by the downstream intersection.The se-
quences of clusters provide short-term variability of traf-
fic flows at each intersection and preserve the non-uniform
nature of real-time flows. Specifically, the road cluster se-
quence CR,m is a sequence of (|c|, arr, dep) triples reflect-
ing each approaching or queued vehicle on entry road seg-
ment m and ordered by increasing arr. Since it is possible
for more than one entry road to share the intersection in a
given phase (a phase is a compatible traffic movement pat-
tern, e.g., East-West traffic flow), the input cluster sequence
C can be obtained through combining the road cluster se-
quences CR,m that can proceed concurrently through the in-
tersection. The travel time on entry road m defines a finite
horizon (Hm), and the prediction horizonH is the maximum
over all roads.

Every time the cluster sequences along each approach-
ing road segment are determined, each cluster is viewed as
a non-divisible job and a forward-recursion dynamic pro-
gramming search is executed in a rolling horizon fashion
to continually generate a phase schedule that minimizes the
cumulative delay of all clusters. The frequency of invoking
scheduling is once a second for reducing uncertainty asso-
ciated with clusters and queues. The process constructs an
optimal sequence of clusters that maintains the ordering of
clusters along each road segment, and each time a phase
change is implied by the sequence, then a delay correspond-
ing to the intersection’s yellow/all-red changeover time con-
straints is inserted. If the resulting schedule is found to vio-
late the maximum green time constraints for any phase (in-
troduced to ensure fairness), then the first offending cluster
in the schedule is split, and the problem is re-solved.

Formally, the resulting control flow can be represented
as a tuple (S,CCF) shown in Figure 2, where S is a se-
quence of phase indices, i.e., (s1, · · · , s|S|), CCF contains

the sequence of clusters (c1, · · · , c|S|) and the correspond-
ing starting time after being scheduled. More precisely, the
delay that each cluster contributes to the cumulative delay∑|S|

k=1 d(ck) is defined as

d(ck) = |ck| · (ast− arr(ck)), (1)

where ast is the actual start time that the vehicle is allowed
to pass through, which is determined by the optimization
process. The optimal sequence (schedule) C∗CF is the one
that incurs minimal delay for all vehicles.

Figure 2: The resulting control flow (S,CCF) calculated by
scheduling agents: each block represents a vehicular cluster.
The shaded blocks represent the delayed clusters.

To collaborate with neighbor intersections, each intersec-
tion receives a projection of expected outflows from its up-
stream neighbors and plugs it into its local computation. Af-
ter starting to execute its schedule, the resulting flows are
communicated to its downstream neighbors. Since a vehicle
may enter into/leave from intersection via different road seg-
ments, the clusters that are propagated to neighbors over ex-
tended look-ahead horizonH are split and weighted by turn-
ing movement proportion. Thus, the weight |c| of the non-
local cluster will be a fractional number to reflect the uncer-
tainty of movement. The turning movement proportion data
is estimated by taking average of traffic flow rates for differ-
ent phases. All approaching vehicles are sensed through the
intersection’s lane detectors.

Problem Definition
As mentioned earlier, our hypothesis is that the effectiveness
of this schedule-driven process is restricted by the fact that
as each scheduling agent aims to optimize its own cumula-
tive delay without regard to the cost it imposes on others.
To formulate the problem, we model a transportation net-
work by a graph G = {V,E}, where the vertex v ∈ V is
the intersection and e ∈ E is the road segment connecting
the intersections. Since schedule-driven traffic control is an
online planning approach, overall performance can be for-
mulated as the sum of the following coupled objective that
is continually re-optimized at each replanning time t for the
current prediction horizon H:

min
{CCF,i(t),i∈V }

∑
i∈V

fi(Ci(t), C−i(t)), (2)

where Ci(t) and C−i(t) are the local cluster sequences of
approaching vehicles at intersection i and intersections other
than i, CCF,i determines ast (actual start times) of the in-
put clusters and thus how local clusters propagate to down-
stream, and fi(Ci(t), C−i(t)) =

∑|S|
k=1 d(ck) is the cumu-

lative delay of intersection i ∈ V given the schedules of all
intersections except i,
C−i(t) = (C1(t), · · · , Ci−1(t), Ci+1(t), · · · , C|V |(t)).

(3)
Note that the cumulative delay at intersection i is not merely
determined by the local clusters Ci but also the propagated
C−i (i.e., outflow information) sent by other intersections
within H . However, due to the combinatorial nature of the
scheduling problem, solving this network-wide scheduling
problem exactly is computationally intractable, especially if
the horizon H is extended sufficiently by including flow in-
formation from multiple intersections and there are many
intersections to coordinate. Here, we consider a formulation
that can be solved in a decentralized way with only commu-
nication of direct neighbors and their local clusters.
Definition 1 (Overall Performance with a Finite Horizon).
Assuming that the indirect impact of an intersection sched-
ule that is two or more hops away is negligible through a
finite horizon H , we have the following optimization prob-
lem:

min
{CCF,i(t),i∈V }

∑
i∈V

fi(Ci(t), CNi(t)), (4)

where Ni is the set of direct neighbors of intersection i
and CNi

(t) are the scheduled clusters sent by these neigh-
bors. If a longer look-ahead horizon is allowed, more inter-
sections can be inserted into the set Ni. Under light traf-
fic conditions, (4) hints that a good approximate solution is
one where each agent optimizes its local objective greedily,
since less traffic is created toward others. Considering the
performance of this schedule-driven process in a network
that is experiencing high congestion, however, the coupling
of traffic across intersections is dominant in this delay com-
putation. The remedy is to bias the scheduling search more
toward reducing joint delay across neighboring intersections
as the level of local congestion increases.

Bi-Directional Information Exchange
In this section, we introduce a distributed algorithm for cal-
culating the schedule of a given intersection, so that its re-
sults are better coordinated with the schedules of neighbor-
ing intersections. In brief, we propose an asynchronous de-
centralized algorithm in which agents generate a harmonized
joint timing plan through reciprocal exchange of down-
stream congestion cost information in addition to exchanged
schedule outflow information. With this extra information,
the intractable network-level optimization problem can be
approximated by locally planning according to a modified
objective that incorporates this information.

Congestion Feedback
As mentioned earlier, the control efficiency of a signalized
network not only depends on how a single intersection allo-
cates green time efficiently but also is affected by how much

traffic it imposes on others. According to schedule-driven
traffic control, the agent is able to make the optimal decision
based on the observed approaching vehicles within a finite
horizon. To push the boundary of performance further, we
incorporate next-hop delay into the optimization.

To estimate the next-hop delay, we need to divide the con-
trol flow Ci(t) according to the corresponding phases. For
each intersection with a set of entry and exit roads, traf-
fic on a given exit road is sent to the downstream neighbor
that corresponds to that traffic phase. The traffic light cy-
cles through a fixed sequence of phases P , and each phase
p ∈ P governs the right of way for a set of compati-
ble movements from entry to exit roads. Therefore, the se-
quence CCF,i(t) at intersection i can be decomposed into
|P | sub-sequences (C1,i(t), · · · , C|P |,i(t)), where Cp,i(t)
contains clusters (cp,1, · · · , cp,|Sp|) with the right of way
during phase p and Sp designates indices of clusters.

To illustrate the idea of incorporating next-hop delay into
computation, the overall performance (4) is rewritten in
terms of intersection i as

fi(Ci(t), CNi(t)) +
∑
j 6=i

fj(Cj(t), CNj (t)). (5)

Specifically, (5) is viewed as an approximation of the
global objective (2) for the intersection i, so that minimiz-
ing (5) guides the local decision to approach social welfare.
If we assume that outflow information CNi(t − 1) and oth-
ers’ schedule CCF,j(t − 1), j 6= i are received at time t by
intersection i, i.e., each agent is an information taker and
ignores any immediate influence it has on this information,
each intersection i solves the following problem to approach
social welfare:

min
CCF,i(t)

fi(Ci(t), CNi(t− 1))

+
∑
j 6=i

fj(Cj(t− 1), {CNj\i(t− 1), Ci(t)}), (6)

where Nj\i denotes neighbor intersections of j except i.
The control flow CCF,i(t) decides the ast (actual start time)
of (Ci(t), CNi(t − 1)) and thus the arr (arrival time) of
Ci(t) at downstream intersections, where Ci(t) is used to
represent both the input cluster sequence at intersection i
and the outflow information received by other intersections.
The problem can be further simplified by removing irrele-
vant terms to Ci(t).
Proposition 1 (Biased Local Objective). Since the Ci(t)
only exists in the local objective of Ni, minimizing (6) at
time t is equivalent to solving

min
CCF,i(t)

fi(Ci(t), CNi(t− 1))

+
∑
j∈Ni

fj(Cj(t− 1), {CNj\i(t− 1), Ci(t)}). (7)

Proof. By Definition 4, Ci(t) only exists in the fi and
fj , j ∈ Ni.

From (7), the second term considers the number of vehi-
cles sent to neighbors according to Ci(t). More specifically,

the possible delay of sent vehicles at intersections other than
i should be taken into account if the scheduling agent of
intersection i attempts to compute a schedule CCF,i(t) to-
ward social welfare. For instance, if intersection j is the
next-hop of cp,k in the direction of phase p, only Cp,i(t) can
contribute to the term fj(Cj(t), CNj

(t)) in (5). Basically,
solving (7) improves overall delay performance compared
to baseline schedule-driven approach that solves local ob-
jective individually, as shown in the Proposition 2.

Proposition 2 (Improve two hop delay). To any vehicles,
the cumulative delay of passing through two consecutive in-
tersections is improved by solving (7) compared to minimiz-
ing local objective fi(Ci(t), CNi(t−1)) independently, i.e.,
baseline approach, given previous neighbor information.

Proof. From (7), the summation of cumulative delay for all
vehicles v ∈ Ci(t), CNi

(t − 1) to pass through intersection
i and the corresponding Ni is minimum.

However, computing actual next-hop delay is unpracti-
cal due to the nature of combinatorial problem. Intuitively,
the contribution of Cp,i(t) can be estimated by the aver-
age delay of sent vehicles in the phase p. We introduce a
feedback, which is called congestion feedback denoted by
d̂[Cp,j(t − 1)], to quantify this contribution. Through the
cluster representation of schedule-driven traffic control, we
have an intuitive way to estimate d̂[Cp,j(t− 1)]

Definition 2 (Congestion Feedback). Intersection j com-
putes its average delay of the phase p and sends to its neigh-
bor corresponding to phase p. Then, we can define conges-
tion feedback sent from intersection j by

d̂[Cp,j(t− 1)] =

∑
cp,k∈Cp,j(t−1) d(cp,k)∑
cp,k∈Cp,j(t−1) |cp,k|

. (8)

The numerator is the total cumulative delay in the phase
p, and the denominator is the total number of vehicles in that
phase. d̂[Cp,j(t− 1)] is the estimated next-hop delay of cp,k
for each vehicle at intersection j according to control flow
Cp,j(t − 1) at the previous time step. Using the notion of
congestion feedback, we can propose a new version of delay
for each cluster at the intersection i that regards the cost it
imposes on others:

Definition 3 (Augmented Delay). The next hop of cp,k is
intersection j. Then, its two hop delay can be represented as

d(cp,k) = |cp,k| ·
[
(ast−arr(cp,k))+ d̂[Cp,j(t− 1)]

]
, (9)

where cp,k ∈ Cp,i(t).

Then, we solve the new problem with this augmented de-
lay to generate schedule that minimizes multi-hop delay.

(8) can serve as an accurate predictor of next-hop delay
since it is based on replanning at the previous time step. If
the granularity of the replanning is every second or even a
smaller time unit, the traffic condition should not shift away
drastically. By introducing (8) in each phase, the number of
vehicles corresponding to a specific phase can be adjusted
within the finite horizon H . Larger next-hop delay implies

that sending more vehicles in a specific phase would in-
crease overall performance in a higher probability. The re-
duction of overall performance could be dominant compared
to the increment of local objective. If the next-hop delay is
small, which means that the traffic of neighbors are light, the
schedule is similar to the original unbiased one. The integra-
tion of next-hop delay motivates the following decentralized
algorithm.

Decentralized Congestion Compensation
In this section, we present how to combine forward commu-
nication of projected vehicle outflows with backward com-
munication of congestion feedback to coordinate a signal-
ized network. The backward congestion feedback reflects
compensation for imposing traffic on downstream traffic. At
the beginning, each intersection announces its |P | conges-
tion cost measures to its upstream neighbors corresponding
to different phases, and each neighbor factors the cost it re-
ceives into the computation of its schedule as described in
Figure 3. After collecting all bi-directional information, in-
tersection i computes schedule according to

CCF,i(t) = argmax
ĈCF,i=(Ĉ1,i,··· ,Ĉ|P |,i)

|P |∑
p=1

∑
cp,k∈Ĉp,i

d(cp,k).

(10)
Each intersection then updates its congestion feedback ac-
cording to (8). In this model, the cost and schedule are asyn-
chronously updated. The decentralized congestion compen-
sation (DCC) algorithm is given as follows

The DCC Algorithm Steps defining how intersection i
communicates to its downstream neighbors to achieve ”so-
cial welfare” of the network

1: Initialization: For intersection i ∈ V generate a initial
schedule Ci(0) and set the congestion feedback to 0.

2: Receive congestion feedback and outflow informa-
tion: At each time t, intersection i receives conges-
tion feedback from downstream of j ∈ Ni, which is
d̂[Cp,j(t−1)], and schedule (outflow information) from
upstream of j ∈ Ni.

3: Forward-recursion dynamic programming search:
Intersection i computes its schedule Ci(t) according to
equation (10).

4: Feedback congestion feedback and outflow informa-
tion: According to equation (8), intersection i calculates
d̂[Cp,i(t)] and schedule and shares them with upstream
and downstream neighbors. Return to step 2.

In the DCC algorithm, it can be seen that to implement
those updates, each intersection i needs to know only: 1)
its traffic flow, the cluster representation within the horizon
H and 2) the neighbor congestion feedback. Although con-
gestion feedback is computed based on neighbor’s previous
schedule, we assume that online planning with replanning
frequently (e.g., every second) can resolve this freshness
problem and generate an accurate prediction of future traffic.

Outdated Information Prevention
Since (8) and (9) of the previous section are in a recursive
form, the information propagated from distant intersections
could be embedded in the congestion feedback. Although
those multi-hop information could reflect the traffic condi-
tions of other intersections in certain sense, those informa-
tion may be outdated. For instance, the congestion informa-
tion embedded in the feedback may imply a clogged neigh-
bor 5 minutes ago, but the traffic is already cleared when the
information arrives at the current local intersection.

Other than (9), we may have other ways to combine these
delay quantity, e.g., weighted average. However, numerical
results show that the performance is similar if intersections
only share their actual local delay to neighbor intersections
rather than a composite multi-hop delay by different com-
bining methods. It can be seen that there is a trade-off be-
tween ”freshness” and propagation distance of information.
Uncertainty marginalizes the advantage of including more
information in optimization.

In order to reduce complexity of real-time system and
avoid the aged information problem, the local delay is
plugged into (8) instead. We maintain two tables recording
augmented and non-augmented (local) delay information re-
spectively when applying the dynamic programming search.
The search is done with the first table, which records those
transitions based on the augmented delay (9). The schedule
is generated by the first table. On the other hand, the sec-
ond table maintains the non-augmented delay dlocal(cp,k) =
|cp,k|·

(
ast−arr(cp,k)

)
when the search is running and uses

it to calculate congestion feedback

d̂[Cp,j(t− 1)] =

∑
cp,k∈Cp,j(t−1) dlocal(cp,k)∑

cp,k∈Cp,j(t−1) |cp,k|
. (11)

By applying these two tables, intersection can determine
the congestion feedback from second table and share them
with neighbors, so that it can prevent outdated information
from flowing within the network. The outdated information
prevention is applied by default in our evaluation.

Figure 3: Exchange congestion feedback with neighbor in-
tersections: intersection 3 and 7 belong to phase 2 of inter-
section 1, and intersection 5 and 9 belong to phase 1.

Bottleneck Prevention
Considering a case where the congestion level (or loading)
of all downstream neighbors is lower than the local loading,
the primary task of the local agent should be evacuating the
approaching vehicles as soon as possible. Otherwise the lo-
cal traffic could possibly reach the physical road capacity.
Alternatively, if the local agent has lower congestion than
one or more of its downstream neighbors, then its priority
should be to slow down traffic evacuation in the appropriate
direction (since the traffic will be delayed anyway). To deal
with this case, we design a bottleneck criterion (BC) based
on the newly computed schedule and the latest received con-
gestion feedback:
Definition 4 (Bottleneck Criterion). The intersection i sat-
isfying

d̂[Ci(t− 1)] · wi + ε ≥ d̂[Cj(t− 1)] · wj , j ∈ Ni (12)

is viewed as a bottleneck and may optimize cumulative non-
augmented delay instead.
Ci(t− 1) and Cj(t− 1) are all input clusters at intersec-

tion i and j. ε is a parameter to make sure that local loading
is sufficiently larger than that of downstream neighbors and
wi is a weight being proportional to corresponding road ca-
pacity. Note that the congestion feedback used in this crite-
rion is computed by Ci(t − 1) and Cj(t − 1), and reflects
the aggregate traffic condition of all phases. If the criterion
is satisfied, then intersection i uses non-augmented delay to
compute schedule. In essence, it means that the agent returns
to self-interested mode.

Turning Movement Proportion
Considering turning proportions at each intersection is cru-
cial for improving performance of adaptive traffic signal sys-
tems. In the baseline schedule-driven approach, the turning
movement proportion is estimated by taking moving aver-
ages of traffic flow rate for different phases respectively. The
lane detectors detect the numbers of turning vehicles, com-
pute the moving average and then normalize these flow rates.
After getting these proportions, the scheduled flow is able to
reflect the realistic traffic flow by proportioning the add-on
flow and evacuated flow. For a grid-like network, the con-
gestion feedback from three input links (e.g., east, north, and
west) of the downstream intersections should be multiplied
by the corresponding turning proportions and summed up
together to obtain the effective congestion feedback to local
input link (north). If cp,k is from intersection u to intersec-
tion i, the effective congestion feedback can be defined by
the following definition,
Definition 5 (Effective Congestion Feedback). cp,k is the
kth cluster in the Cp,i(t) of intersection i from intersection
u.

d̃(cp,k) =
∑

j∈Ni\u

ζu,j · d̂[CP (i,j),j(t− 1)] (13)

is the effective congestion feedback, where ζu,j is the turning
proportions of input and output links between intersection u
and j and P (i, j) is corresponding phase of intersection j
to intersection i.

The corresponding augmented delay is

d(cp,k) = |cp,k| ·
[
(ast− arr(cp,k)) + d̃(cp,k)

]
, (14)

In the following experimental evaluation, the effective con-
gestion feedback is applied by default to deal with the un-
certainty of turning movement.

Experimental Evaluation
In this section, we compare DCC algorithm to two other
real-time traffic control methods. First, we take the perfor-
mance of the original schedule-driven traffic control sys-
tem (Xie, Smith, and Barlow 2012; Xie et al. 2012) as our
baseline system. Second, we compare to a variant of cycle-
based adaptive control that optimizes cycle time, phase split
and timing offset of successive signals every cycle. The
basic concept of cycle-based adaptive control is to calcu-
late cycle time based on estimation of saturation flow rate
(Webster 1958) and allocate green time according to flow
ratio on each phase. A well known of this type of adap-
tive control scheme is SCATS system (DAIZONG 2003;
Wongpiromsarn et al. 2012). 1

To evaluate our approach, we simulate performance on a
two-intersection model and a real world network. The two-
intersection model is for studying how different traffic pat-
tern (i.e., symmetric or asymmetric) affects performance.
The real world network is for evaluating the performance
of DCC in a larger complex real network. The simulation
model was developed in VISSIM, a commercial microscopic
traffic simulation software package. We assume that each ve-
hicle has its own route as it passes through the network and
measure how long a vehicle must wait for its turn to pass
through the intersections (the delay). Tested traffic volume
is averaged over sources at network boundaries. To assess
the performance boost provided by the DCC, we measure
the average waiting time of all vehicles over ten runs. All
simulations run for 3.5 hour of simulated time. Results for
a given experiment are averaged across all simulation runs
with different random seeds.

Two-Intersection Model
We consider a simple two-intersection model with 2-way,
multiple lanes, and multi-directional traffic flow as con-
trolled experiments. By changing external flow rates, two
types of traffic scenarios are tested: 1) symmetric traffic and
2) asymmetric traffic. In this simple model, there is only one
connecting road segment. The maximum traffic volume is
set to 2800 cars/hour due to speed limit and road capacity.

Figure 4 (a) shows that DCC algorithm is able to han-
dle high volume better than the benchmark. When the traffic
volume increases, sending too much traffic to the connect-
ing road segment will deteriorate the traffic condition. If the
congestion feedback is large, dynamic programming search
will decrease the number of vehicles sent to the connecting
road for reducing the cumulative delay. Under lighter traffic

1Note also that previous research with the baseline schedule-
driven approach has shown its comparative advantage over other
online planning approaches (Xie, Smith, and Barlow 2012; Xie et
al. 2012).

situations, the performance of both DCC and baseline are
comparable since small congestion feedback is not strong
enough to bias the schedule. Including more next-hop infor-
mation (e.g., schedule) should be able to reduce this gap.
Furthermore, DCC with the bottleneck criterion could avoid
the situation that both intersections compromise with each
other and thus achieve better performance under light traf-
fic.

In Figure 4 (b), we can observe that DCC is especially
useful when the traffic is asymmetric. In this controlled ex-
periment, we fix the traffic volume of one intersection (right
intersection) and increase the volume of the other one (left
intersection) step by step (from 0% to 40%). DCC provides
20% and 35% delay reduction at most compared with the
benchmark and the cycle-based adaptive control scheme.
When traffic becomes heavier in one of those intersections,
congestion feedback coordinates one intersection to send
more vehicles and the other one to send less along the con-
necting road. Note also that performance of two DCC are
comparable.

It is interesting to note that the performance gain for
asymmetric traffic is greater than the symmetric traffic. If
the traffic pattern is symmetric, it becomes more difficult to
differentiate the loading between neighbors. To improve the
performance further, detailed schedule information may be
required in addition to congestion feedback.

1600 1800 2000 2200 2400 2600 2800

Traffic volume (cars/hour)

40

60

80

100

120

140

160

180

200

A
v
e
ra

g
e
 d

e
la

y
 (

s
e
c
o
n
d
)

Symmetric traffic pattern

Cycle-based Adaptive

Benchmark

DCC

DCC/bottleneck criterion

(a) Symmetric traffic

0 5 10 15 20 25 30 35 40

Volume

 Increase of left intersection(%)

40

60

80

100

120

140

160

180

200

A
v
e
ra

g
e
 d

e
la

y
 (

s
e
c
o
n
d
)

Asymmetric traffic pattern

Cycle-based Adaptive

Benchmark

DCC

DCC/bottleneck criterion

(b) Asymmetric traffic

Figure 4: The delay of symmetric and asymmetric traffic pat-
tern: (a) traffic of both intersections are increasing. (b) only
traffic of left intersection is increasing

Urban Network Model
The network model is based on the Baum-Centre neigh-
borhood of Pittsburgh, Pennsylvania as shown in Figure 5.
The network consists of 24 intersections that are mainly 2-
phased. It can be seen as a two-way grid network. All sim-
ulation runs were carried out according to a realistic traffic
pattern from late afternoon through ”PM rush” (4-6 PM).
The traffic pattern ramps up volumes over the simulation in-
terval as follows: (0-30mins: 472 cars/hour, 30min-1hour:
708 cars/hour, 1hour-2hours: 1056 cars/hour). This simula-
tion model presents a complex practical application to verify
the effectiveness of the proposed approach.

Table 1 shows the results of DCC under PM rush, com-
pared to cycle-based adaptive control approach and the base-
line schedule-driven approach. In addition to DCC, we also
compare DCC with the additional criterion (i.e., bottleneck

Figure 5: Map of the 24 intersections in the Baum-Centre
neighborhood of Pittsburgh, Pennsylvania

Average Delay (second)

mean std. stop no.

Benchmark 147.00 177.94 8.27
Cycle-based Adaptive 169.23 265.91 10.81

DCC 121.56 100.65 5.33
DCC w/ BC 116.01 93.22 5.32

Table 1: Summary of Baum Centre Model Results

criterion) for identifying bottleneck intersections. As can be
seen, delay is reduced by 17.7% and 28.4%, compared to
the schedule-driven and adaptive control approaches respec-
tively. The use of congestion feedback reduces delay by co-
ordinating intersections through exchanging schedule infor-
mation. Furthermore, the use of the congestion feedback is
beneficial for clearing queues of waiting vehicles and reduc-
ing the deleterious effects of spillback (Daganzo 1998) by
stopping vehicles further away from entry into a road seg-
ment with insufficient capacity. For the larger complex net-
work, DCC with consideration of bottleneck intersections
further improves performance by 21.08% and 31.3% respec-
tively compared to those approaches since it helps congested
intersections to clear traffic as soon as possible. In addition
to delay, number of stops is also compared. The number of
stops of DCC is nearly half of cycle-based adaptive control.

Average Delay (second)

Benchmark DCC DCC w/BC Cycle-based Adaptive
mean std. mean std. mean std. mean std.

High demand 212.14 361.41 151.62 77.13 148.62 62.13 230.26 279.19
Medium demand 84.22 61.90 82.56 55.84 78.23 33.82 86.46 61.40

Low demand 71.84 54.25 72.10 49.11 70.21 42.32 73.89 56.77

Table 2: Average delay under different scenarios.

To explore how DCC performs under different demand,
we categorize traffic demand into three different groups: low
(472 cars/hour), medium (708 cars/hour), and high (1056
cars/hour). Table 2 shows DCC to yield an improvement
over the schedule-driven approach of about 30% and the
cycle-based adaptive control of about 35% for the high traf-
fic demand case. For low and medium traffic, the average
delay of three approaches are comparable.

Since traffic conditions are dynamically changing, know-
ing the distribution of delay to vehicles helps us verify

0 100 200 300 400 500 600 700 800

x:Average delay (second)

0

0.2

0.4

0.6

0.8

1

C
D

F
(x

)

Cumulative Distribution Function of Delay

DCC/bottleneck criterion

DCC

Benchmark

Cycle-based Adaptive

13.4%

(a) CDF of delay

0-5 times >5 times

Number of Stops

0.3

0.35

0.4

0.45

0.5

0.55

0.6

R
a

ti
o

 o
f

V
e

h
ic

le
s

Number of Stops

Benchmark

DCC

DCC/bottleneck criterion

Cycle-based Adaptive

(b) Number of stops

Figure 6: The cumulative distribution function of delay and
number of stops.

the effectiveness of DCC algorithm. As shown in Figure 6
(a), using DCC shifts the cumulative distribution function
(CDF) leftward and provides a 13.4% improvement over the
schedule-driven approach for 90% of the vehicles. Note also
that while DCC reduces average delay by 40s, the reduction
is more than 100s for the congested vehicles. In other words,
congestion feedback is especially effective for high conges-
tion scenarios. In comparison to adaptive control, DCC pro-
vides a 17.6% delay reduction for 90% of the vehicles. As
we compare the number of stops among four approaches in
the Figure 6 (b), both DCC approaches have less vehicles
that stop over 5 times than do the benchmark and adaptive
control.

Conclusion

In this work, we considered the limitations of prior ap-
proaches to schedule-driven traffic control that rely on lo-
cal optimization without regard to potential consequences
due to congestion downstream in the network. A distributed
algorithm is proposed to achieve better network-level per-
formance in circumstances of downstream congestion. In
this algorithm, agents compute and communicate their ex-
pected delay, referred to as congestion feedback, to upstream
neighbors in addition to considering the outflow informa-
tion that is sent downstream. Receiving agents adjust their
schedules (and hence their planned outflows) according to
this feedback. This delay feedback is computed by inter-
preting the intersection’s generated schedule in an intuitive
way and is integrated into the original combinatorial op-
timization as a form of multi-hop delay. Performance was
evaluated on two simulation models, which included both a
simple two-intersection model and a real-world traffic signal
control problem. Results showed that the new bi-directional
information exchange model improves average delay over-
all in comparison to both the baseline schedule-driven traf-
fic control approach and a cycle-based adaptive traffic sig-
nal control approach, and that solutions provide substantial
gain in highly congested scenarios. Future work will focus
on improving the accuracy of feedback based on pricing
techniques and negotiation for approaching the optimality
of network-wide scheduling.

References
Bazzan, A. L., and Klügl, F. 2014. A review on agent-based
technology for traffic and transportation. The Knowledge
Engineering Review 29(3):375–403.
Bazzan, A. L. 2005. A distributed approach for coordination
of traffic signal agents. Autonomous Agents and Multi-Agent
Systems 10(1):131–164.
Cai, C.; Wong, C. K.; and Heydecker, B. G. 2009. Adaptive
traffic signal control using approximate dynamic program-
ming. Transportation Research Part C: Emerging Technolo-
gies 17(5):456–474.
Camponogara, E., and Kraus, W. 2003. Distributed learning
agents in urban traffic control. Progress in artificial intelli-
gence 324–335.
Da Silva, B. C.; Basso, E. W.; Bazzan, A. L.; and Engel,
P. M. 2006. Dealing with non-stationary environments using
context detection. In Proceedings of the 23rd international
conference on Machine learning, 217–224. ACM.
Daganzo, C. F. 1998. Queue spillovers in transportation net-
works with a route choice. Transportation Science 32(1):3–
11.
DAIZONG, L. 2003. Comparative evaluation of dynamic
TRANSYT and SCATS-based signal control systems using
Paramics simulation. Ph.D. Dissertation.
Dresner, K., and Stone, P. 2008. A multiagent approach to
autonomous intersection management. Journal of artificial
intelligence research 31:591–656.
Gartner, N.; Pooran, F.; and Andrews, C. 2002. Opti-
mized policies for adaptive control strategy in real-time traf-
fic adaptive control systems: Implementation and field test-
ing. Transportation Research Record: Journal of the Trans-
portation Research Board (1811):148–156.
Gettman, D.; Shelby, S.; Head, L.; Bullock, D.; and Soyke,
N. 2007. Data-driven algorithms for real-time adaptive tun-
ing of offsets in coordinated traffic signal systems. Trans-
portation Research Record: Journal of the Transportation
Research Board (2035):1–9.
Heung, T. H.; Ho, T. K.; and Fung, Y. F. 2005. Coor-
dinated road-junction traffic control by dynamic program-
ming. IEEE Transactions on Intelligent Transportation Sys-
tems 6(3):341–350.
Huang, J.; Berry, R. A.; and Honig, M. L. 2006. Distributed
interference compensation for wireless networks. IEEE
Journal on Selected Areas in Communications 24(5):1074–
1084.
Jonsson, A., and Rovatsos, M. 2011. Scaling up multiagent
planning: A best-response approach. In ICAPS.
Kuyer, L.; Whiteson, S.; Bakker, B.; and Vlassis, N. 2008.
Multiagent reinforcement learning for urban traffic control
using coordination graphs. Machine learning and knowl-
edge discovery in databases 656–671.
Lowrie, P. 1992. Scats - sydney co-ordinated adaptive traf-
fic system - a traffic responsive method of controlling urban
traffic. Roads and traffic authority, sydney, nsw, australia.

Nunes, L., and Oliveira, E. 2004. Learning from multi-
ple sources. In Proceedings of the Third International Joint
Conference on Autonomous Agents and Multiagent Systems-
Volume 3, 1106–1113. IEEE Computer Society.
Robertson, D., and Bretherton, R. 1991. Optimizing net-
works of traffic signals in real time - the scoot method. IEEE
Transactions on Vehicular Technology 40(1):11–15.
Schrank, D.; Eisele, B.; Lomax, T.; and Bak, J. 2015. 2015
urban mobility scorecard.
Sen, S., and Head, K. L. 1997. Controlled optimization of
phases at an intersection. Transportation science 31(1):5–
17.
Shelby, S. G. 2001. Design and evaluation of real-time adap-
tive traffic signal control algorithms.
Smith, S. F.; Barlow, G. J.; Xie, X.-F.; and Rubinstein, Z. B.
2013. Smart urban signal networks: Initial application of
the surtrac adaptive traffic signal control system. In ICAPS.
Citeseer.
Stevanovic, A. 2010. Adaptive traffic control systems: do-
mestic and foreign state of practice. Number Project 20-5
(Topic 40-03).
Webster, F. V. 1958. Traffic signal settings. Technical report.
Wongpiromsarn, T.; Uthaicharoenpong, T.; Wang, Y.; Fraz-
zoli, E.; and Wang, D. 2012. Distributed traffic signal con-
trol for maximum network throughput. In 2012 15th In-
ternational IEEE Conference on Intelligent Transportation
Systems, 588–595. IEEE.
Wu, F.; Zilberstein, S.; and Chen, X. 2009. Multi-agent
online planning with communication. In ICAPS.
Xie, X.-F.; Smith, S. F.; Lu, L.; and Barlow, G. J. 2012.
Schedule-driven intersection control. Transportation Re-
search Part C: Emerging Technologies 24:168–189.
Xie, X.-F.; Smith, S. F.; and Barlow, G. J. 2012. Schedule-
driven coordination for real-time traffic network control. In
ICAPS.
Yang, B., and Johansson, M. 2010. Distributed optimiza-
tion and games: A tutorial overview. In Networked Control
Systems. Springer. 109–148.

