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Abstract
Key to the effectiveness of schedule-driven ap-
proaches to real-time traffic control is an ability to
accurately predict when sensed vehicles will arrive
at and pass through the intersection. Prior work in
schedule-driven traffic control has assumed a static
vehicle arrival model. However, this static predictive
model ignores the fact that the queue count and the
incurred delay should vary as different partial signal
timing schedules (i.e., different possible futures) are
explored during the online planning process. In this
paper, we propose an alternative arrival time model
that incorporates queueing dynamics into this for-
ward search process for a signal timing schedule,
to more accurately capture how the intersection’s
queues vary over time. As each search state is gen-
erated, an incremental queueing delay is dynami-
cally projected for each vehicle. The resulting total
queueing delay is then considered in addition to the
cumulative delay caused by signal operations. We
demonstrate the potential of this approach through
microscopic traffic simulation of a real-world road
network, showing a 10− 15% reduction in average
wait times over the schedule-driven traffic signal
control system in heavy traffic scenarios.

1 Introduction
As traffic congestion in cities continues to increase, it is
generally recognized that better optimization of traffic sig-
nals is crucial to future urban mobility, and this fact, to-
gether with emergence of ubiquitous sensing capabilities,
has led to new thinking around real-time approaches to this
long studied problem (e.g., [Wongpiromsarn et al., 2012;
Varaiya, 2013; El-Tantawy et al., 2013; Duncan et al., 2014;
Mitrovic et al., 2019; Smith, 2020]. One promising approach
that has emerged in recent years and is aimed specifically
at urban traffic control, has been referred to as schedule-
driven traffic control. [Xie et al., 2012a; Xie et al., 2012b;
Smith et al., 2013] This approach treats traffic control as a
decentralized, online planning process, exploiting a novel
formulation of the intersection control problem as a single-
machine scheduling problem (where input jobs are sequences
of spatially proximate vehicle clusters representing queues

and approaching platoons). This aggregate representation en-
ables generation of near-optimal timing plans for individual
intersections in real-time, which are then shared with neigh-
boring intersections to achieve network level coordination.
Original work demonstrated substantial traffic flow efficiency
improvements over statically optimized timing plans in ac-
tual field test experiments [Smith et al., 2013]; and subse-
quent work has explored the further advantages of incorpo-
rating multi-modal traffic flows [Xie et al., 2014], integrating
with queue management objectives [Hu and Smith, 2017a;
Hu and Smith, 2017b], exploiting higher fidelity predic-
tive models [Goldstein and Smith, 2019], upstream prop-
agation of congestion information [Hu and Smith, 2018;
Hu and Smith, 2019], control of vehicle speed in connected
vehicle setting [Hu et al., 2019], use of stochastic sampling
for modeling turning proportions [Dhamija et al., 2020], and
learning of model parameters [Hu and Smith, 2020]. Already
incorporating many of these advances, this schedule-driven
traffic control technology is now deployed and operating in 8
North American cities.

Despite this success, there is room for further improvement.
One key to the effectiveness of any schedule-driven traffic
control algorithm is an ability to accurately predict when the
sensed vehicles will arrive at and pass through the intersection.
All prior work in schedule-driven traffic control has assumed
a static vehicle arrival model to make this prediction (as origi-
nally proposed in [Xie et al., 2012a]). Initially, each vehicle
cluster is associated with a free-flow arrival time, computed
using a fixed free-flow speed estimate and the distance from
vehicle sensor location to the intersection. In situations where
queued vehicles are already present at the intersection, a delay
proportional to the queue count (the number of the queued
vehicles) is added to the free-flow arrival time, using the cur-
rent queue count that remains unchanged, and this delay is
propagated to all vehicle clusters within the planning horizon.
The summation of the queueing delay and the free-flow arrival
time to the end of queue is thus taken as a prediction of the
estimated arrival time for each vehicle cluster.

One limitation of this static predictive model, however, is
that it ignores the fact that the queue count and its incurred
queueing delay should vary as different partial signal timing
schedules (i.e., different possible futures) are explored during
the online planning process. More specifically, the vehicle
cluster’s arrival time incorporating queueing delay depends



on when the previously queued vehicles are discharged and
when it joins the queue, and this time can be better predicted
through the previous partial schedule’s state and its free-flow
arrival time. We would expect to be able to further boost the
performance of the traffic signal control system by introducing
the ability to predict queueing delay online in response to
observed traffic behavior.

In this paper, we propose an online queue prediction algo-
rithm that incorporates queueing dynamics into this forward
search process for a signal timing schedule. Our algorithm
computes a more accurate estimate of the delay a queued ve-
hicle will experience than static queue estimation techniques
without increasing overall search complexity. As each search
state is generated, an incremental queueing delay relative to
the previous queued vehicle within the horizon is projected,
based on the previous state, the free-flow arrival time, and the
queue dissipation model. The resulting total queueing delay is
considered in addition to the original cumulative delay caused
by signal operations when evaluating alternative partial sched-
ules. With this extension, we are able to better capture not
only how the intersection’s queues vary over time but also the
impact of vehicle stops on cumulative delay at the intersec-
tion. We demonstrate the potential of this approach through
microscopic traffic simulation of a real-world road network,
showing a 10− 15% reduction in average wait times in heavy
traffic scenarios over a schedule-driven variant that is utilizing
the previous static predictive model.

2 Schedule-Driven Traffic Control
As noted above about the schedule-driven approach, the essen-
tial consequence of the single machine scheduling problem
formulation of [Xie et al., 2012b] is that traffic flows are
treated as sequences of clusters c over the planning (or pre-
diction) horizon. Each cluster c is defined as (|c|, arr, dep),
where |c|, arr and dep are number of vehicles, arrival time
and departure time respectively. Vehicles approaching an in-
tersection from the entry roads are clustered together if the
time gap between them is less than a pre-specified time inter-
val (e.g., 1 second). The clusters then become the input jobs
that must be sequenced through intersection (i.e., the single
machine). Once a vehicle departs the intersection, it is sensed
and grouped into a new cluster by the downstream neighbor
intersection. The sequences of clusters provide short-term
variability of traffic flows for optimization and preserve the
non-uniform nature of real-time flows.

More specifically, the input to the online planning process
at the beginning of each planning cycle is a set C of phase
cluster sequences, where a phase is a compatible traffic move-
ment pattern such as East-West traffic flow. A phase cluster
sequence CP,i for a given phase i is obtained by merging those
constituent road cluster sequences CR,m that can proceed con-
currently through the intersection and belong to the phase,
where each CR,m consists of (|c|, arr, dep) triples that reflect
each approaching or queued vehicle on entry road segment
m and are ordered by increasing arr. The travel time on en-
try road m defines a finite horizon (Hm), and the prediction
horizon H is the maximum over all road segments.

During planning, each cluster is viewed as a non-divisible

Figure 1: The resulting control flow (S,CCF ) and the predicted
queue count Q at each search state: each block represents a vehicular
cluster. The shaded blocks represent the delayed clusters.

job and a forward-recursion dynamic programming search is
executed in a rolling horizon fashion to continually generate
a phase schedule that minimizes the cumulative delay of all
clusters. In practice, the planning cycle is repeated every sec-
ond or two, to reduce the uncertainty associated with clusters
and queues. The process constructs an optimal sequence of
clusters that maintains the ordering of clusters along each road
segment m, and each time a phase change is implied by the
sequence.

Formally, the resulting control flow can be represented as a
tuple (S,CCF ) shown in Figure 1, where S is a sequence of
phase indices, i.e., (s1, · · · , s|S|), CCF contains the sequence
of clusters (c1, · · · , c|S|), ci ∈ C and the corresponding start-
ing time after being scheduled. More precisely, the delay that
each cluster contributes to the cumulative delay

∑|S|
k=1 d(ck)

is
d(ck) = |ck| · (ast− arr(ck)), (1)

where ast is the actual start time that the vehicle is allowed to
pass through, which is determined by arr and permitted start
time (pst). For a partial schedule Sk, the corresponding state
variables are defined as a tuple, (s, pd, t, d), where s is phase
index and pd is duration of the last phase, t is the finish time of
the kth cluster and d is the accumulative delay for all k clusters.
The state variable of Sk can be updated from Sk−1, and the
corresponding pst for ck is equal to t + MinSwitch(s, i),
where MinSwitch(s, i) returns the minimum time required
for switching from phase s to i and slti is the start-up lost time
for clearing the queue in the phase i. The optimal sequence
(schedule) C∗CF is the one that incurs minimal delay for all
vehicles.

3 Incorporating Queueing Dynamics into
Scheduling

3.1 Queueing Delay
Other than the delay caused by the signal operations, i.e.,
d(c) = |c| · (ast− arr(c)), a cluster may experience an extra
delay, known as queueing delay, if the cluster’s constituent
vehicles are forced to decelerate or stop due to queued vehicles
in front of them. In the static vehicle arrival model utilized
in previous work, this delay is considered to be proportional
to current queue count (the number of the queued vehicles in
front of the approaching cluster). This count is assumed to



Algorithm 1 Calculate qdinter and qdintra of c
Require: 1) pst, a0, a1, sk; 2) (s, pd, t, d) of Sk−1

1: i = sk; c = next job of phase i; qdinter, qdintra = 0
2: w = max(0, |c| − 1) . exclude the first vehicle of c
3: if pst > arr(c) and c is not queued then . c will stop
4: if s 6= i and arr(c) > t then . New phase starts
5: qdintra = w · (a0 − a1)
6: dep(c) = dep(c) + a0 +max(0, w − 1) · a1
7: else if arr(c) ≤ t then . Queue already exists
8: qdinter = a1
9: dep(c) = dep(c) + w · a1

10: end if
11: qdintra = qdintra + (w + 1)w/2 · a1
12: end if
13: return (dep(c), qdinter, qdintra)

persist throughout the planning horizon and is not recomputed
as different partial schedules are expanded.

To better capture the queueing dynamics in these situations,
we propose to incorporate an alternative vehicle arrival model
where queueing delay evolves as a function of different partial
signal timing schedules (i.e., different possible futures) that are
explored during the online planning process. More specifically,
as the search states representing different partial schedules
are expanded to incorporate the next approaching cluster, the
possibility of queuing delay is assessed. If the arr of the next
cluster to be added to the schedule, computed using a fixed
free-flow speed estimate and the distance from vehicle sensor
location to the intersection, is less than the finish time t of the
previous search state (i.e., the intersection departure time of
the previous cluster), then this cluster is determined to have
joined the queue. In this case, the headway (i.e., the temporal
gap between two adjacent queued vehicles) of all preceding
vehicles in the queue ahead of the cluster is summed and added
to the cluster’s free-flow arr as the queueing delay, and arr
and dep of the vehicle clusters will be thus delayed.

To incorporate the queueing delay into the objective, a
queueing delay that is relative to ast is added to the origi-
nal cluster delay, and the total delay contributed by cluster c is
rewritten as

d(c) = |c| · (ast− arr(c)) + qd(c), (2)

where qd(c) is the queueing delay of c and can be de deter-
mined through the search process and a queue dissipation
model that will be introduced in the next section.

3.2 Queue Dissipation Model
The total queueing delay for a single vehicle due to the ex-
isting standing queue can be estimated using the following
relationship adopted from [Head, 1995]):

qdtotal(Nq) = a0 + a1 · (Nq − 1), a0 ≥ a1;Nq ≥ 1 (3)

where a0 and a1 are parameters that can be selected on the
basis of the particular intersection and Nq is the number of
vehicles already in the queue. The interpretation of this model
is that a0 is a sum of the initial headway and residual start-up
lost time for the second vehicle in the queue, and the following

vehicles joining the queue experience an additional headway
a1. Since the initial speed is small, a0 should be greater than
a1. With this model, we can estimate how much delay a
queued vehicle will experience before being dissipated and
the headway relative to the previous queued vehicle. Although
the model can be extended to a more complicated polynomial
or non-linear functional form, our experimental data shows
that a linear model is sufficient to model dissipation. The
parameters can be selected by field experiments or learned by
online learning algorithms.

To retain the efficiency of generating longer-horizon plans,
we define two types of queueing delay for a vehicle cluster that
contains multiple vehicles: 1) intra-cluster queueing delay and
2) inter-cluster queueing delay. Intra-cluster queueing delay
is the delay experienced by all vehicles other than the first
vehicles within the cluster, and it can cause the enlargement
of the cluster (i.e., dep(c) increases). Inter-cluster queueing
delay, alternatively, is the delay experienced by the first vehicle
within the cluster if there are already one or more queued
clusters in front of it, and the pst will be delayed. For the
example of Figure 1, the stop of cluster (2, 1) causes a qdinter
between (2, 1) and (2, 2), and the stop of (2, 2) causes qdinter
between (2, 2) and (2, 3) and qdintra within (2, 3). With these
definitions, Equation 2 can be rewritten as

d(c) = |c| · (ast+ qdinter − arr(c)) + qdintra, (4)

where qdinter and qdintra are the inter-cluster and intra-
cluster queueing delay and qd(c) = |c| · qdinter + qdintra.
qdintra and qdinter can be calculated given a0, a1 and the
state tuple (s, pd, t, d) by Algorithm 1.

Algorithm 2 Calculate (pd, t, d) of Sk

Require: 1) (s, pd, t, d) of Sk−1 ; 2) sk
1: i = sk; c = next job of phase i
2: Compute qd, and update dep(c) and pst:

a: pst = t+MinSwitch(s, i);
b: (dep(c), qdinter, qdintra) =Algorithm 1, given

(pst, a0, a1), input 1) and 2); . Queueing dynamics
c: pst = pst+ qdinter; . insert qdinter if needed

3: ast = max(arr(c), pst) . Actual start time of c
4: if s 6= i and pst > arr(c) then ast = ast+ slti
5: end if
6: t = ast+ dep(c)− arr(c) . Actual finish time of c
7: if s 6= i then pd = t− pst
8: else pd = pd+ (t− pst)
9: end if

10: d = d+ |c| · (ast− arr(c)) + qdintra . Total delay
11: return (pd, t, d)

In Algorithm 2, we describe how the search state Sk is
expanded from Sk−1, given the previous tuple (s, pd, t, d),
based on a greedy realization of planned signal sequence.
Algorithm 1 is executed at Line 2 of Algorithm 2, and then
qdinter, qdintra, and dep(c) are derived for revising pst and
delay contribution accordingly. Then, ast is determined by
the maximum of arr and pst at Line 3 of Algorithm 2. If arr
is less than pst, this means that the cluster will stop and the
both types of queueing delay should be included. We consider



two cases after knowing the cluster will stop. First, if a cluster
joins an existing queue, then its qdintra is calculated based on
the following theorem:
Theorem 1. If a cluster c joins an existing queue, the in-
curred queueing delay within the cluster is O(|c|2) and can
be calculated by qdintra = (|c|−1)|c|

2 · a1
Proof. The queueing delay experienced by the second vehicle
within the cluster is a1; The one experienced by the third
vehicle is 2a1 contributed by the queueing delay from the
previous vehicle and itself, and so on. qdintra experienced
by the vehicles within c other than the first vehicle is thus
a1 + · · ·+ (|c| − 1) · a1 = (|c|−1)|c|

2 · a1.

Then, qdinter is set to a1 and added to pst when the cluster
joins an existing queue. Its contribution to the cumulative
delay is |c| · a1. Equation 4 can be rewritten as

d(c) = |c| ·
(
ast+ a1 − arr(c)

)
+

(|c| − 1)|c|
2

· a1 (5)

Second, if a new phase has just started in the currently ex-
panded search state, then the second vehicle within the added
cluster will experience headway a0 instead of a1 and the rest
of vehicles will still experience a1 instead. Therefore, the
queueing delay needs to be offset by the difference (a0 − a1).
Note that there is no qdinter in this case since it is the first
cluster in the new phase.

3.3 Online Planning with Queueing Delay
In this section, we describe how to integrate queueing delay
into the online planning algorithm and predict the queue count.
The goal is to improve traffic control performance by utilizing
a more accurate predictive queueing model.

First, before computing the schedule, we determine whether
a vehicle is queued or not given the snapshot of current queue
count. Then, all vehicles approaching the intersection are
clustered together based on the free-flow arr at their free-flow
speed. In other words, approaching vehicles are clustered
according to their geometrical proximity. After clustering, we
delay arr of the queued clusters based on the snapshot by
adding Equation 3 according to the queue count they observe
when joining the queue, and this delayed arr will serve as a
part of the initial state for building the schedule.

When computing the schedule, each cluster will be checked
if it joins a queue. If so, dep(c) of the free-flow clusters will
be increased, and the queueing delay is computed to update
pst and the objective as described in Algorithm 2 and 1 at
each expansion step of the search.The physical interpretation
of this update is that the stop due to the current queue expands
the cluster duration dur by a1 ·max(0, |c| − 1) and increases
the gap between clusters’ arrival time by qdinter.

Since the previously queued clusters will depart the inter-
section at the ast = max(pst, arr(c)) that is determined by
the schedule, we can predict the queue count at any future
time points within the horizon H by tracking the number of
the dissipated vehicles and the number of vehicles joining the
queue at each search state. Three cases mentioned in Algo-
rithm 1 are necessarily considered for predicting the queue
count: a) If the cluster does not stop, the queue count of this

cluster is 0. b) If the cluster stops and a queue does not exist
(i.e., a start of a new phase), the queue count is 0 as well. c) If
the cluster stops and a queue already exists, given the queue
count of the previous state, then the queue count of the current
state is represented as

Q(Sk) = Q(Sk−1) + |ck−1| − l(Sk), (6)

where Q(Sk) is the observed queue count of the partial sched-
ule Sk for ck, and l(Sk) is the number of dissipated vehicles
between the arrivals of ck and ck−1.

More specifically, the number of the vehicles joining the
queue at each state is simply |ck−1| of the previous cluster
in the same road cluster sequence CR,m on road segment
m. However, knowing the number of the dissipated vehicles
requires to count how many vehicles whose end times t fall
within the range between two adjacent arrivals are dissipated.
An algorithm that computes Q(Sk) in the case c) is provided
in Algorithm 3,

Algorithm 3 Predict Q(Sk) given Sk−1 and ck
Require: 1) Sk−1,Q(Sk−1); 2) ck−1 and ck

1: l(Sk) = 0;ptr = ck−1
2: while max(phase start, arr(ck−1)) < ast(ptr) do
3: if t(ptr) < arr(ck) then . check end time t of ptr
4: l(Sk) = l(Sk) + |ptr| . ptr is dissipated
5: end if
6: ptr = previous cluster of the cluster ptr
7: end while
8: Q(Sk) = Q(Sk−1) + |ck−1| − l(Sk)

Since the extension does not generate additional states dur-
ing the search, it retains the efficiency of scheduling with
longer horizons, and the complexity is still polynomial in
|H| = H/δ, the number of time steps in H [Xie et al., 2012b],
given a time resolution δ.

Currently, the baseline arr for calculating delay is assumed
to be arrival time of the vehicle cluster if moving according
to the static arrival model. In the following section, a concept
of minimum guaranteed queue is introduced to define the
objective (cumulative delay) for taking both queueing delay
and signal delay into consideration.

3.4 Minimum Guaranteed Queue
According to Equation 1, each cluster contributes a time differ-
ence between the ast and the free-flow arr to the cumulative
delay. After taking queueing delay into account, ast is offset
by a queueing delay (equally a headway), i.e, qdinter, and
qdintra are added according to Equation 4. In turn, the delay
contribution of each cluster should include the total queueing
delay caused by all previous queued vehicles other than the sig-
nal delay. However, to define the cluster delay correctly, arr
should be a delayed arr in which we assume each cluster will
experience its own minimum queue count if the corresponding
green phase persists.
Definition 1 (Minimum Guaranteed Queue). Minimum Guar-
anteed Queue (MGQ) is the minimum queue count a moving
cluster observes when it joins the queue under an assumption
that the corresponding phase stays green until the cluster exits.



MGQ is used to specify arr of the cluster delay (i.e., Equa-
tion 5) when both qdintra and qdinter are considered and
taken as a baseline to define delay. Meanwhile, the minimum
queueing delay without any intervention of the traffic signal
can be calculated directly from MGQ. However, since MGQ is
irrelevant to any state transition, the solutions will only differ
by a constant if another baseline arr, e.g., arr at the free-flow
speed, is applied.

Theorem 2. The solutions of any baseline arr will only differ
by a constant compared to the arr calculated with MGQ.

Proof. arr is not state-dependent due to the traffic signal
operations. Therefore, we can replace it with any baseline arr
without compromising the optimality of the solution.

Due to Theorem 2, we simply use the free-flow arr to
compute the schedule without loss of optimality unless there
is a need for acquiring the actual cost of the schedule.

4 Experimental Evaluation
In this section, we compare the above described online
queue prediction algorithm to three other real-time traffic
control methods. First, we include the two most recent
variants of the schedule-driven traffic control system: a)
The variant that ensures queueing stability (i.e., that queues
will not increase without bound) [Hu and Smith, 2017a;
Hu and Smith, 2017b] serves as the primary benchmark since
this version has been proved to be effective in several North
America cities [Smith, 2020], and b) the more recent bi-
directional extension that utilizes the downstream congestion
information [Hu and Smith, 2018; Hu and Smith, 2019] is
also included as another point of comparison. We implement
new versions of each of these two extensions that incorporate
online queue prediction. Second, we compare to a variant of
backpressure adaptive control [Wongpiromsarn et al., 2012;
Varaiya, 2013] that makes decisions based on the estimated
queue count and ensures queueing stability.

1

To evaluate our approach, we simulate performance on a
two-intersection model and a real world network. The two-
intersection model is used to estimate model parameters. The
real world network is used to evaluate the performance of
planning with queueing delay in a larger complex real network
and real traffic pattern. The simulation model was developed
in VISSIM, a commercial microscopic traffic simulation soft-
ware package. We assume that each vehicle has its own route
as it passes through the network and measure how long a vehi-
cle must wait for its turn to pass through the intersections (the
delay). Tested traffic volume is averaged over sources at net-
work boundaries. To assess the performance boost provided by
the proposed algorithm, we measure the average waiting time
of all vehicles over five runs. All simulations run for 1 hour of
simulated time. Results for a given experiment are averaged
across all simulation runs with different random seeds.

1Note also that previous research with the baseline schedule-
driven approach has shown its comparative advantage over prior
online planning approaches to real-time traffic signal control [Xie et
al., 2012a].
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Figure 2: The average queueing de-
lay for different queue counts.

Figure 3: Map of the 11 in-
tersections in the St. Albert,
Canada

Estimation of Model Parameters Since the headway pa-
rameters a0 and a1 are critical for computing the queueing
delay, setting them correctly could affect how the queueing
dynamics are modeled. We consider a simple two-intersection
model with 2-way, single lane, and multi-directional traffic
flow as controlled experiments. The source of traffic is as-
sumed to be stationary and set to 500 cars/hour. In Figure 2,
three scenarios are plotted. We can see that the three lines ac-
tually fit the queue dissipation model (i.e., Equation 3) closely,
which can be characterized by an intercept (i.e., a0) and a
slope (i.e., a1). The difference between them is in whether
vehicles experience a signal delay or not. If the signal delay is
larger than 0, an additional start-up lost time should be added
to the average delay, leading to an upper shift of the line. We
use a linear function to approximate the line without the signal
delay, and the estimations of a0 and a1 are approximately
(5.8s, 2.4s). We then apply these values to a larger complex
network. For non-stationary traffic, a0 and a1 can be adjusted
adaptively through tracking arrival and departure of vehicles.
It is worth noting that the performance of this model shows
the same trend as the following urban network model.

Urban Network Model The network model we consider for
a more complex scenario is based on the St. Albert neighbor-
hood of Canada as shown in Figure 3. The network consists of
11 intersections that basically have multiple phases. It can be
seen as a two-way corridor network. To explore how the pro-
posed algorithm performs under different traffic patterns and
demands, we evaluate two traffic patterns: AM and PM rush
hour, and categorize traffic demand into three different groups:
low (AM/PM 116.18/66.55 cars/hour), medium (AM/PM
249.27/99.82 cars/hour), and high (AM/PM 332.36/133.10
cars/hour). The low demand data is extracted from the field
data of St. Albert of 6-9am, 1/6/2020 - 1/8/2020, and ramped
up to generate two other demands.

Table 1 shows that both versions of the proposed method
are basically comparable except that the one combining with
benchmark (i.e., ensure queueing stability) performs better
than the other by 2.4% under the AM high demand case. In the
following results, we mainly consider this variant to present
our evaluation. It shows the online queue prediction to yield a
delay improvement over the benchmark and the bi-directional
extension of about 13%/19% and an improvement of about
20% over backpressure control for the AM high traffic demand
case. For the number of stops, the improvements are 24%,
23% and 48% respectively. For low and medium traffic, the de-



Average Delay (second) and Number of Stops

Benchmark Bi-directional Planning with qd (benchmark) Planning with qd (bi-direc.) Backpressure

mean std. stop no. std. mean std. stop no. std. mean std. stop no. std. mean std. stop no. std mean std. stop no. std

AM High 95.55 95.87 3.89 7.34 104.57 103.94 3.66 7.19 84.77 81.10 2.96 4.33 86.83 82.12 3.03 4.53 105.61 118.63 5.68 10.94
AM Medium 64.86 60.98 1.74 1.80 62.96 57.23 1.65 1.62 56.04 52.94 1.60 1.50 56.64 53.31 1.61 1.54 59.29 55.39 1.73 1.67

AM Low 54.11 53.68 1.40 1.25 53.59 52.87 1.44 1.3 49.54 49.41 1.37 1.22 49.37 49.57 1.38 1.25 52.16 51.66 1.39 1.24

PM High 50.08 50.36 1.29 1.11 49.57 49.73 1.33 1.21 47.75 48.78 1.29 1.13 48.91 49.12 1.32 1.15 51.97 53.5 1.33 1.15
PM Medium 47.20 49.67 1.25 1.10 46.54 49.16 1.23 1.19 45.73 47.31 1.22 1.07 46.22 47.55 1.23 1.09 51.02 53.63 1.25 1.07

PM Low 44.58 48.26 1.20 1.01 43.85 48.32 1.19 1.01 46.11 48.80 1.20 1.02 45.78 48.60 1.19 1.18 55.20 58.03 1.21 1.02

Table 1: The mean and standard deviation (std.) of delay and number of stops (stop no.) under different scenarios.

lay and the stops of the proposed approach are generally better
than the three approaches. The online queue prediction en-
abling planning with the queueing delay prevents the decision
making from falling into short-sighted decisions and allows it
to outperform backpressure, which only utilizes current queue
counts to make decisions. On the other hand, compared to the
benchmark, which is actually comparable to the bi-directional
extension, taking the queueing delay into account more ac-
curately captures realistic traffic variation and improves the
schedule. Moreover, from the AM high demand case, we can
see that maintaining queueing stability and using prediction
are both crucial for reducing congestion.
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Figure 4: Average queue counts at 2 most congested intersections in
the network

For the PM rush hour, although the demand is not as large
as the AM rush hour, several dominating roads are present
instead of a single main road like the AM rush, requiring
better coordination among the intersections. Because of the
lower demand, the backpressure approach is not able to re-
duce delay through the simple queueing policy. Contrarily,
the backpressure’s weakness to coordinate intersections is to
worsen the delay of entire network, so it has the largest de-
lay among four approaches under the PM low demand. The
proposed online queue prediction is generally better than the
benchmark and the bi-directional extension, even in PM rush
hour it has shorter queues. The benefits come from the fact
that the proposed vehicle arrival model is more accurate at
predicting arrival times.

Figure 4 also shows the average queue counts of two
bottleneck intersections, Boudreau-Bellerose and Boudreau-
Campbell, under the AM high demand scenario. The average
queue count of four roads at both intersections are shown.
The proposed approach has the shortest queue, compared to
the benchmark and the backpressure approach respectively.
As can be seen, the use of online queue prediction reduces
the queue count and balances the queues among four roads
through planning. For example, compared to the backpressure,

although the proposed approach has longer queues at the first
three roads of Boudreau-Bellerose, the reduction of the queue
count on the forth road is significant in return. It is the same
for the third road at Boudreau-Campbell.

Table 2: RMSE and lookahead h of using 2nd and 3rd cluster to pre-
dict queue count at Boudreau-SWC and their corresponding average
queue count

2nd Cluster 3rd Cluster

Avg. [±3s] [±5s] h(second) Avg. [±3s] [±5s] h(second)

Phase 2 1.92 1.22 1.11 26.91 1.80 1.24 1.09 41.16
Phase 8 1.53 0.73 0.63 20.92 1.94 0.94 0.86 29.53

According to Algorithm 3, future queue count is predicted
during generating schedule and tracking arrivals/departures of
the clusters. In Table 2, two comparisons on different phases
(i.e., 2 and 8) at Boudreau-Sir Winston Churchill (SWC) in-
tersection are made. We take the second and the third cluster
(i.e., c2 and c3) as predictions of the future queue count. Due
to the uncertainty of arrival time, the measured queue count
that is within a window (e.g., ±3 or ±5 second) and has the
smallest error is chosen to compute root-mean-square error
(RMSE). The prediction error is around 1 vehicle, and the
average lookahead h(second) could be up to 40 second.

5 Conclusion
In this work, we considered the limitations of prior approaches
to schedule-driven traffic control that rely on a static arrival
model without regard to the fact that the queue count and the
incurred delay should vary as different partial signal timing
schedules are explored during the online planning process.
An online queue prediction algorithm is proposed to achieve
better delay and number of stops in circumstances of high
traffic demand. In this algorithm, each scheduling agent com-
putes queueing delay of each cluster dynamically, as states are
expanded during the search process, given the previous state
and the free-flow arrival time, and predicts the arrival time
dynamically. Experimental results showed that the proposed
approach improves cumulative delay overall in comparison to
the schedule-driven traffic control approaches using a static
vehicle arrival model and a backpressure approach, and that
solutions provide substantial gain in highly congested scenar-
ios.
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