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Abstract

In this paper, we propose an approach that alleviates rush hour
congestion through scheduling vehicles’ access to the bottle-
neck road segments. We consider a setting in which each par-
ticipating driver has a window of feasible departure time, and
has to access several bottleneck road segments (e.g., tunnels
or bridges) during the driver’s itinerary. Our goal is to pro-
duce a timetable, which provides a specific departure time
for each driver so that the peak traffic through the consid-
ered bottlenecks can be minimized. We formulate this as an
optimization problem with a set of constraints, each repre-
senting a temporal range in which a participating driver can
start to commute. Our objective is to minimize the combined
peak volumes of all bottleneck road segments. We provide a
precise definition to this problem and propose an integer lin-
ear programming (ILP) approach to solve this problem. The
ILP formulation proposed here uses two types of constraints
to direct the optimization: (1) the window constraint, which
corresponds to each driver’s temporal flexibility, and (2) the
capacity constraint, which caps each bottleneck’s peak usage.
This approach is analyzed through simulations on real-world
map data of Pittsburgh, Pennsylvania. Compared to a base-
line case where each vehicle departs at its earliest time and
a randomized approach using a random departure time, our
scheduling approach is found to reduce the mean travel time
by 15 to 20%. We also explored the impact of different pene-
tration rates, i.e., percentages of vehicles participating in the
scheduling service, and found that the improvement is still
substantial even with just 40% of adoption.

Introduction
Traffic congestion in urban areas is a serious problem, re-
sulting in significant economic costs for drivers through
wasted time and fuel, and environmental cost through in-
creased vehicle emissions. The primary cause of traffic con-
gestion is limited roadway capacity, which is highlighted
during the rush hours when the number of vehicles on the
road can exceed the capacity of “bottleneck” road segments.
One straightforward approach to addressing this problem
is to increase infrastructure capacity through road building.
However, studies on traffic and transportation have shown
that widening or building more roads might not be the best
way to alleviate congestion and could in some cases create
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more traffic (Downs 1962; Duranton and Turner 2011). Even
when the capacity building does help, the construction could
be infeasible due to physical constraints and the costs could
be prohibitive. For these reasons, we believe that the better
way to create more capacity should be through better control
and coordination and not infrastructure building.

Due to a large number of vehicles traveling during peak
rush hours, roadways are especially susceptible to conges-
tion during this period. Over the past decade, major cities
are increasingly turning to a demand management approach,
which regulates the number of vehicles on the road to relieve
the traffic congestion (Meyer 1999; Pluntke and Prabhakar
2013). Most of these existing demand management strate-
gies rely on road pricing or usage restriction; however, these
measures usually need infrastructural supports and law en-
forcement efforts and are thus not always feasible.

In this paper, we propose a scheduling-based approach to
coordinate the road usage and relieve traffic congestion. This
approach explores the possibility of reducing peak traffic
volumes by scheduling vehicles’ departure times according
to drivers’ self-reported departure time windows. For each
participating driver, we assume that we could collect this
driver’s origin, destination, and a time window specifying
feasible departure time. Given inputs from all participating
drivers, we would suggest a personalized schedule for each
driver to depart. The objective of our scheduling algorithm
seeks to minimize the combined peak congestion levels at
all identified bottleneck road links.

To demonstrate the potential of this demand shifting ap-
proach, we provide a corresponding integer linear program-
ming (ILP) model. This model uses a time-indexed formu-
lation and utilizes two types of constraints: 1) the window
constraints, and 2) the capacity constraints. The window
constraints specify the temporal flexibility that the partici-
pating drivers have for their times of departure. The capac-
ity constraints allow us to identify the maximal number of
vehicles that simultaneously arrive at the considered bottle-
neck segments. To analyze the effectiveness of our proposal,
we identify several main arterial roads of Pittsburgh as our
bottlenecks and assume that each vehicle may pass through
several bottlenecks according to their chosen routes. As a
comparison, we consider a baseline strategy in which drivers
depart at their earliest possible departure time and a simple
randomized approach (each driver would choose a departure



time uniformly randomly within the time window).
We evaluate the effectiveness and the efficiency of these

approaches by measuring the mean travel time (MTT) and
the computational cost, under several different test con-
ditions. Across all comparisons, the scheduling approach
achieves significant performance advantages, ranging from
15 to 20% in travel time reductions. Our approach does not
need 100% adoption to work; in our experiments, we show
that the system congestion begins to improve even with only
20% adoption rate. Our contributions can be summarized as
follows:

• We define a new scheduling problem that realizes demand
shifting to reduce peak traffic volumes.

• We propose a ILP model with iterative travel time update
to solve the proposed scheduling problem.

• We evaluate performance of the ILP model through
a detailed simulation. Empirical results show that our
schedule-driven approach reduces delay by 20% at most.

The remainder of the paper is organized as follows. First,
we briefly review some existing regulating methods for re-
lieving traffic congestion. Following that, we describe the
setting considered and provides a formulation to the prob-
lem. An ILP-based method is then proposed. Following that,
we present the results from simulations and discuss the ef-
fectiveness of the proposed approach. We then look at some
related computational approaches from the literature. Fi-
nally, we conclude this paper.

Traditional Traffic Engineering
Since traffic congestion has been a substantial problem in
our society, researchers from different fields such as traffic
engineering (Strickland and Berman 1995) and economics
(Arnott, De Palma, and Lindsey 1990) have been persis-
tently working to eliminate the cost of congestion. Current
approaches to congestion follow three basic paradigms:1)
capacity addition, 2) road rationing, and 3) congestion pric-
ing.

Capacity addition solves congestion from the supply side.
Increasing the number of lanes and deploying new public
transit services are two approaches of capacity addition in
transportation networks. However, there are several chal-
lenges with increasing the capacity of road networks. For
example, the fundamental law of expressway congestion
(Downs 1962; Duranton and Turner 2011) claims that the
traffic volume of an expressway increases with additional
road capacity, and construction of new capacity does not re-
duce congestion for existing commuters in the long run.

From the demand side, road rationing and congestion
pricing (Liu, Yang, and Yin 2014; Han, Yang, and Wang
2010; Viegas 2001) are two other approaches for alleviating
traffic congestion. For road rationing, certain types of vehi-
cles are prohibited from being driven on certain days. Simi-
larly, congestion pricing means that vehicles are charged for
the usage of the road. However, both approaches run into
public resistance due to cost of deployment and unfair pric-
ing. For example, New York City abandoned its congestion
pricing policy for Manhattan after encountering significant

opposition from neighboring suburbs, who considered the
scheme to be unfair.

The above demand-side congestion mitigation methods
modify user behavior by disallowing or restraining drivers
from using the road. On the other hand, the schedule-driven
approach we propose in this paper exploits each driver’s
commute flexibility to search for departure times that dis-
perse congestion. Compared to other methods for demand
management, the proposed approach is more closely aligned
with human behaviors and easily applied in cities due to
the development of mobile computing (Thiagarajan et al.
2009) and crowd sourcing applications(Pluntke and Prab-
hakar 2013).

Demand Shifting Traffic Scheduling Problem
In this section, we give a precise definition to the scenario
that we consider in this paper. This scenario comprises a set
of commuters (or vehicles) K and a set of bottleneck road
segments B. Each vehicle k ∈ K has a specific route con-
necting its starting location and its final destination. When
vehicles are traveling from the starting location to the desti-
nation during rush hours in the morning (and in reverse di-
rection in the evening), most vehicles will pass through sev-
eral popular road sections and accumulate significant vol-
umes at these sections. We refer to these road sections as
bottlenecks (Helly 1900). For example, for the Pittsburgh
area, the Fort Pitt tunnel, connecting downtown and the sub-
urban South Hills area, is one of the most important bottle-
neck. When the amount of traffic exceeds the capacity of the
bottleneck, traffic congestion will emerge and delay will be
incurred. In the following sections, we consider a practical
setting in which multiple bottlenecks are considered.

Each vehicle k is assumed to have some flexibility as to
departure time. By exploiting the collective flexibility of all
drivers, vehicles can be directed to arrive at bottlenecks at
different times and alleviate traffic congestion without con-
structing new infrastructure. In contrast to the concentrated
traffic volume that would pour into the bottlenecks during
the short periods of peak hours, scheduling vehicles based
on drivers’ demands spreads the commute patterns of vehi-
cles across a longer duration, and thus vehicles encounter
less competition for the road capacity.

Let K = |K| represent the number of vehicles that must
traverse multiple bottleneck road segments (e.g., the Fort Pitt
tunnel) during the rush hours. Each vehicle k has:
• A time window Wk = [ek, lk] during which the vehicle k

must depart from its starting point.
• A set of bottlenecks Bk that vehicle k needs to pass

through sequentially. (Note that B = ∪kBk).
• A specified route connecting its starting location, bottle-

necks in Bk and its final destination.
• A set of estimated travel time {dkb}b∈Bk

, each correspond-
ing to an estimate for traveling from k’s starting point to
a bottleneck b. dkb will be updated according to change of
traffic.

In the following sections, we assume dkb is updated itera-
tively and the most recent dkb is applied. In addition, assume



that time horizon Trush containing all Wk is discretized and
indexed by the multiples of a basic time unit ∆T . We then
round down the Wk to the nearest time index within Trush.

The goal is to form a schedule S = (s1, s2, . . . , sK) ∈
NK that amortizes the vehicle passages of the bottlenecks,
where each sk specifies the departure time for the commuter
k. We define the number of vehicles that arrive at the bottle-
neck as the traffic volume. The objective is then to reduce the
traffic volume per unit time ∆T at the bottlenecks while sat-
isfying each commuter’s departure window constraint. Note
that once we have decided an S = (s1, s2, . . . , sK), we can
estimate for each vehicle k, the arrival time at a bottleneck
b ∈ Bk as sk + dkb .

In the following sections, we will formulate the problem
in terms of S. A valid (feasible) schedule S must have the
following properties:
• Each element of S should be a valid departure time. The

domain of sk should be the discretized indices to the as-
sumed time horizon, i.e., t = 1, 2, · · · ∈ Trush. Note that
Trush = ∪kWk .

• Each sk should respect commuter k’s window constraint
Wk. Assuming the consecutive time slot indexes covered
by Wk are the integers, ek, . . . , lk, then the following con-
straints must be satisfied:

ek ≤ sk ≤ lk, k = 1, . . . ,K. (1)

Given the above descriptions of valid schedules, the target
optimization problem is to minimize the quantity Cb at each
bottleneck, where

Cb = max
t

K∑
i=1

1(sk + dkb = t), (2)

t ranges over Trush and 1( · ) is the indicator function. By
minimizing Cb, we lower the number of vehicles that is
scheduled to travel through the bottleneck segment b simul-
taneously, and the fewer the number of vehicles that arrive
simultaneously, the shorter the delay in traversing through
the bottleneck segment. Formally, we define this problem as
the following:
Definition 1. Given a set of vehicles and a set of bottlenecks,
the Demand Shifting Traffic Scheduling Problem (DSTSP) is
to search for a schedule that minimizes the maximum of the
number of simultaneous arrival vehicles at each bottleneck.

Figure 1 illustrates the overall picture of our setting. In
this example, we have four vehicles with their preferred time
windows Wk. The task is to specify the value of sk so as
to determine the exact departure time for each vehicle that
satisfies the above specified definition.

Schedule-Driven Demand Shifting
To relieve traffic congestion, the departure times of all
drivers must be diverse. Therefore, we seek a feasible sched-
ule that minimizes the upper bound of the constraint (2)
at each bottleneck. Through the schedule, the number of
vehicles that arrive at the bottleneck simultaneously is de-
creased. In this section, we propose an ILP model to solve
the DSTSP.

Figure 1: A four-vehicle case for the DSTSP

Objective Function

Traffic congestion in a transportation network can be quan-
tified in terms of the statistics of the arrival processes of the
network bottlenecks. These statistics determine the distri-
butions of congestion level and waiting time at each road
segment. It is evident that desirable scheduling is associated
with a small mean and variance of delay at each bottleneck.
In queueing theory, the delay is proportional to the arrival
rate of incoming traffic according to Little’s law. Cb could
be seen as upper bound of arrival rate. However, it is usually
difficult to express the objective by using a single figure for
optimization.

A convenient alternative is to measure congestion in terms
of average traffic carried by each bottleneck. More precisely,
we assume that the arrival rates at each bottleneck change
due only to schedule update, and we measure congestion on
bottleneck b via the upper bound Cb. An useful expression∑

b∈BDb(Cb),where Db is a function of arrival rate, is often
appropriate as an objective for optimization. A frequently
used formula, average link utilization, is Db(Cb) = Cb

Ub
,

where Ub is the physical capacity of bottleneck b. In the fol-
lowing sections, we assume the capacity of each bottleneck
is same, and the objective can be simplified to

∑
b∈B Cb.

ILP Model

This section presents an ILP model for the DSTSP. The
model uses a binary variable xk

t to denote which starting
time sk is selected, where sk = t is equivalent to xk

t = 1.
In order to convert the DSTSP defined previously into an
ILP formulation, we introduce the following capacity con-
straint,

K∑
i=1

1(sk + dkb = t) ≤ Cb, (3)

where now Cb upper bounds of the number of vehicles that
arrive at bottleneck b at time t simultaneously. With this an
ILP model is formulated as follows:



Table 1: Problem Variables

Param. Description
K a set of vehicles
Bk a set of bottlenecks that vehicle k passes through
B all bottlenecks in the city (B = ∪kBk)
Wk time indices that vehicle k is willing to depart
ek, lk Wk = {t ∈ N : ek ≤ t ≤ lk}
dkb the time that vehicle k takes to bottleneck b ∈ Bk

Var. Description
Cb congestion level for bottleneck b ∈ B
xk
t time-indexed variable for driver k

min
∑
b∈B

Cb (4)

s.t
∑{

k:k∈K,b∈Bk,

ek+dk
b≤t≤lk+dk

b

}xk
t−dk

b
≤ Cb , ∀b ∈ B, t ∈ Trush ,

(5)∑
t∈Wk

xk
t = 1, xk

t ∈ {0, 1} , ∀k ∈ K.

(6)

Constraints (6) ensure that the window constraints (1) are
fulfilled, constraints (5) correspond to the capacity con-
straint defined above, while the objective (4) minimizes the
summation of arrival rate at each bottleneck.

Lower Bound Cut
To speed up the process of solving the ILP model, we intro-
duce a cut constituted of C1 · · · , C|B| to eliminate feasible
solutions. Since the lower bound constituting of Cb can be
obtained by solving each bottleneck separately, we introduce
the cutting plane ∑

b∈B

C∗b ≤
∑
b∈B

Cb, (7)

where C∗b is the optimal solution for each bottleneck inde-
pendently. C∗b can be acquired by solving a single bottleneck
under assumption that the schedules of different bottlenecks
are independent. According to our results, adding this cut
improves running time by 50% for complex instances, i.e,
more bottlenecks. The running time of solving single bottle-
neck is far shorter than solving multiple bottlenecks. It only
casts a small amount of effort with respect to solving the
DSTSP. The following results are presented with applying
the cut.

Iterative Travel Time Update
Since the {dkb}b∈Bk

are affected by the generated schedule,
e.g., flow rate (vehicles/hour) is smaller after being sched-
uled, we propose an iterative method to update the travel

times and the schedule, which was applied in route guidance
system (Wunderlich, Kaufman, and Smith 2000). The con-
cept is illustrated in Figure 2. Combining a schedule calcula-
tion with a traffic simulation in an iterative manner, we can
revise the schedule to align with the simulated travel time
{d̃kb}b∈Bk

to each bottleneck. Once {d̃kb}b∈Bk
is approxi-

mately equal to {dkb}b∈Bk
in the model, then we terminate

whole procedure and report the latest departure time S to
users. The schedule that terminates iterations can be identi-
fied as a fixed point for DSTSP.

Figure 2: The iterative travel time update.

Experiments
This section presents experimental results of solving the
DSTSP for the rush hours of Pittsburgh, PA. We considered
the AM rush hours (7AM-10AM) where inbound traffic is
dominant. The algorithms were implemented using C++ and
CPLEX12.7 and the results were obtained on 64-bit machine
with 3.8GHz×8 Intel Core i7-4790 and 16GB of RAM.

Instances
In this section, we explain the procedure that generates
the problem instances for the experiments. First, PM traf-
fic of Pittsburgh is simulated. We randomly generate ori-
gins nearby downtown and destination around the subur-
ban area. Second, we pick N bottlenecks scattered around
the boundary between downtown and suburban area, and
each vehicle pass through a random number of bottlenecks
from their origin to destination. We defined two different
cases: high and low dependency cases. The vehicles in the
high-dependency cases pass through more congested bottle-
necks than the vehicles in the low-dependency cases, i.e.,
E|Bh,k| ≥ E|Bl,k|. Therefore, the starting time of the vehi-
cle in the high-dependency case may have larger impact on
the rush hours since it affects more bottlenecks. The com-
plexity of finding a solution for the high-dependency cases
is also higher than the low-dependency cases. Third, a route
including the assigned bottlenecks is pre-generated for each
vehicle, and each vehicle has different departure flexibility,
which is realized by assigning a randomly generated win-
dow Wk.



Simulation Setup
The microscopic traffic simulation platform SUMO (Simu-
lation of Urban MObility) (Krajzewicz et al. 2012) is used
to evaluate the performance impact of our schedule-driven
approach. To provide a realistic setting, we import the Pitts-
burgh map data from the OpenStreetMap into SUMO as
shown in Figure 3 and identify 3 to 7 arterial roads as the
bottlenecks. The first step of the simulation is to generate
problem instances according to the steps from the previous
subsection. Subsequently, we provide the solver with the de-
parture times, routes and temporal flexibility and generate
the scheduled departure times. Finally, we run the simula-
tion with the scheduled departure time and feed the new sim-
ulated travel time into ILP model for the next iteration of the
travel time update. The flow chart of the simulation is illus-
trated in Figure 4. All simulations run for 4 hours of simu-
lated time. To eliminate the effects of simulation start up and
termination, we only report the mean travel time (MTT) of
vehicles arriving their destination within the middle 2 hours.
Results for a given experiment are averaged across ten sim-
ulation runs with different random seeds.

Figure 3: The simulator with a realistic Pittsburgh map.

Figure 4: The simulation pipeline based on SUMO.
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Figure 5: The effect of different window size.

Table 2: MTT comparison for different traffic pattern.
High dep.,2000/hr High dep., 4000/hr

MTT(s) Iteration MTT(s) Iterations

Earliest Start 3226± 21 N/A 7418± 21 N/A
Randomized Start 3029± 16 N/A 7124± 33 N/A
Scheduled Start 2565± 11 4 6140± 15 3

Low dep., 2000/hr Low dep., 4000/hr

MTT(s) Iteration MTT(s) Iterations

Earliest Start 1432± 25 N/A 5521± 27 N/A
Randomized Start 1450± 23 N/A 5234± 35 N/A
Scheduled Start 1391± 14 5 4674± 25 4

Urban Traffic Problem
We compare the proposed schedule-driven approach with a
baseline case where each vehicle starts at its earliest start
time ek and a simple randomized approach (using a random
departure time within each time window). For each sched-
uled vehicle, the chosen window size range is between 20
minutes and 90 minutes. We ran the test with ∆T = 30 sec-
onds on 5 bottlenecks. We tested two different traffic vol-
umes: 2000 vehicles/hour and 4000 vehicles/hour vehicles
and two different scenarios: high and low dependency.

Table 2 shows that MTT of the proposed and two other
approaches running over two sets of randomly generated
vehicles (i.e., 4000/hour and 2000/hour) and two differ-
ent traffic patterns (i.e., the high-dependency and the low-
dependency cases). In the high-dependency case with 2000
vehicles/hour, the schedule-driven approach has a smaller
MTT compared to the earliest start case. When traffic vol-
ume is increasing, the gap between two approaches become
larger. Specifically, the MTT of the high-dependency case
with 2000 vehicles/hour could be reduced by 700 seconds
(26%). In the more congested case with 4000 vehicles/hour,
the MTT reduction is still 17%. We can also observe that the
performance of the randomized approach is usually in the



Table 3: Different number of bottlenecks and dependency with 4000/hour.
High dependency

Earliest Start MTT(s) Scheduled MTT(s) Improv.(%) Iterations Avg. Tcpu(s)

3 bottlenecks 7148± 33 7025± 14 1.7% 4 421
5 bottlenecks 7418± 21 6140± 15 17.2% 3 1438
7 bottlenecks 7567± 35 6893± 31 8.8% 2 3378

Low dependency

Earliest Start MTT(s) Scheduled MTT(s) Improv.(%) Iterations Avg. Tcpu(s)

3 bottlenecks 6423± 11 5529± 21 14.1% 4 62
5 bottlenecks 5521± 27 4674± 25 15.3% 4 163
7 bottlenecks 5606± 42 5595± 48 0.1% 4 387

middle of the baseline and the schedule-driven approach. On
the other hand, the low-dependency cases achieve a smaller
MTT reduction, which is approximately the same when the
traffic demand level is low, and 13% when the traffic demand
level is high. It is interesting to note that when the traffic
demand level is high, the generated schedule is more effec-
tive in coordinating the vehicles. In addition, when the cross
traffic between bottlenecks is high, i.e., in high-dependency
cases, schedule-driven approach works better as well.

The iterative travel time update is applied on the schedule-
driven approach to update {dkb}b∈Bk

. We terminate the pro-
cedure if the simulated travel time is within 5% of previ-
ous simulated travel time. For high traffic demand, it takes
less iterations to terminate since the congestion from pre-
vious bottlenecks decreases flexibility of optimizing current
schedule. Contrarily, applying iterative update on low de-
mand traffic is able to improve the performance further.

In Figure 5, we study how different window size affects
the MTT. Basically, the larger the average temporal flexibil-
ity, the larger improvement of MTT scheduling can provide.
It gives our model more room to coordinate departure times.
We assume that the maximum window size is 1.5 hrs and
adjust the lower bound of window size. By increasing the
average window size of all vehicles, the 3 bottlenecks with
2000 vehicles/hour can achieve 20% improvement at most.

In Table 3, we profile the schedule-driven approach on
different numbers of bottlenecks with 4000/hour volume.
For high dependency, the instance of 5 bottlenecks has the
highest improvement, while the improvement in 3 and 7 bot-
tlenecks problems is lower. There are two reasons: (1) the
traffic in the 7 bottleneck case becomes sparse. The benefit
of scheduling vehicles is decaying. (2) 3 bottlenecks case is
the most congested scenario. The delay caused by previous
bottlenecks is propagated to the latter one. The benefit of
scheduling is marginal. The benefit should be enlarged if we
provide a more accurate estimated dkb . Moreover, the trend
of low dependency is decreasing with the increased number
of bottlenecks. The instances of 3 and 5 bottlenecks are in
the region that scheduling is beneficial.

We also measure the speed of solving the ILP model and
find that it depends on two important factors: (a) the number
of bottlenecks and (b) the dependency among bottlenecks,

which is the average number of bottlenecks each vehicle
passes through. For instance, solving the high dependency
with 7 bottlenecks takes average 3378 seconds ∼ 1 hour for
each iteration. However, solving the low dependency with
3 bottlenecks takes only average 62 seconds for each itera-
tion. If the dependency is small, the solver is able to solve
the ILP model promptly. The CPU time can be understood
in the following way: If it takes too long to generate a solu-
tion, it would be impractical as a daily notification service.
For instance, drivers may need to change their routes and
flexibility just prior to rush hour, and one hour should be a
reasonable buffering time.

Effect of Penetration Rates

Understanding the performance under different penetration
rates is an essential issue for deploying the proposed meth-
ods under realistic scenarios. In the results presented thus
far, we have assumed that all vehicles are scheduled by the
proposed approach. However, it may be difficult in practice
to achieve such a high penetration rate. Figure 6 presents
the MTT of the schedule-driven approach under different
penetration rates. We assume that the window information
of those scheduled vehicles are known. In order to help the
scheduled vehicles to avoid rush hours, we assume that they
are able to access the traffic information as well. It can be
estimated by monitoring the bottlenecks daily. Then the ve-
hicles are scheduled to avoid the estimated rush hours with
other unscheduled vehicles by modifying the constraint (5)
to

∑
k x

k
t,sched. +

∑
k x

k
t,unsched. ≤ Cb. For example, we

consider a case of single bottleneck. Penetration rate 40%
indicates that 40% of vehicles are scheduled according to
their demand and the other 60% start at their ek. The re-
sults show that the proposed algorithm can still provide a
considerable 16% improvement compared with the baseline
case for a single bottleneck when the penetration rate is 50%.
The improvement drops to 12% at a penetration rate of 35%
which still represents a reasonable reduction in overall con-
gestion. If drivers provide larger windows for their departure
times, we believe performance at lower penetration rates will
improve further.
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Related Works
The traffic scheduling problem defined in this work is a new
problem due to its objective of reducing the upper bound
Cb of the capacity constraint. If the upper bound is fixed
and without the variable departure times of each user, we
can view the problem as an evacuation planning problem.
In macroscopic evacuation planning, it models the move-
ment of evacuees as flows in the evacuation graph. The
evacuation planning is related to maximum dynamic net-
work flow problem (MDFP) (Ford Jr and Fulkerson 1958;
Burkard, Dlaska, and Klinz 1993). MDFP computes the
maximum flow over one time period and then determine the
paths on the network through flow decomposition. However,
MDFP and related problems do not consider variable de-
parture times for each flow to compute maximum flow in
the context of evacuation. (Even, Pillac, and Van Henten-
ryck 2015) introduced the concept of convergent evacuation
plans, which assigns an evacuation routes to each residential
zone. The authors defines a time-expanded graph (Köhler,
Langkau, and Skutella 2002) to tackle temporal aspects of
evacuation planning, which could correspond to the variable
departure times of traffic scheduling problem. However, get-
ting an optimal solution of this problem is restrictive because
of its scalability issues. Using it to solve the traffic schedul-
ing problem is even worse, because all drivers have a win-
dow, which increases the number of nodes in the graph by
at least one order of magnitude. In addition, the graph of
the traffic scheduling problem is composed of a few con-
gested bottlenecks and a large number of source nodes that
represent the starting locations of drivers. According to com-
muting behavior, it is preferable to model it as a scheduling
problem since the drivers usually intend to select main roads
for commuting.

The traffic scheduling problem can be also viewed as a dy-
namic job shop scheduling problem (Ramasesh 1990) when
the vehicles are jobs and the bottleneck is machine. The sin-

gle machine problem usually assumes the capacity of the
machine is constant at a finite value. However, the upper
bound of road capacity that leads to free flow is difficult
to determine since it depends on the chosen speed and the
definition of congestion level. If the upper bound can be
minimized and simultaneously fulfill the time requirement
of each user, the travel time would be reduced as much as
possible and also be able to incorporate more traffic uncer-
tainty.

Developing control strategies to reduce traffic conges-
tion in the research community has been discussed exten-
sively. This includes traffic light control (Boillot, Midenet,
and Pierrelée 2006), contraflow (Kim, Shekhar, and Min
2008) and rerouting of cars (Li, Mirchandani, and Boren-
stein 2009). Compared to those works, this paper considers a
more realistic and simpler approach, which only takes user’s
demand into account without adding controlled infrastruc-
tures. Moreover, this approach can be integrated with other
approaches to achieve a synergistic effect. To us, the traffic
scheduling problem falls into a category of traffic regulation
design.

Conclusions
In this work, we describe a demand shifting traffic schedul-
ing problem for relieving traffic congestion. A schedule-
driven approach is developed to solve it under the realistic
map data of Pittsburgh. Since the level of congestion directly
relates to the upper bound of the capacity constraints, we
formalized the Demand Shifting Traffic Scheduling Problem
(DSTSP) and presented an ILP model for finding a schedule
minimizing the arrival rate at each bottleneck based on each
driver’s temporal flexibility. The proposed ILP model min-
imizes the bound to spread vehicles’ departure times prop-
erly. We demonstrate that the approach improves travel time
and throughput substantially compared with the baseline
case. Furthermore, our solutions provide substantial gain un-
der small penetration rates.

Future work will focus on extending the models to inte-
grate route decisions and build a more accurate model on
how delay caused by previous bottlenecks propagate. Route
decisions would give additional flexibility to the optimiza-
tion algorithm to exploit spatial flexibility. Accurate delay
model can improve the performance further for larger traffic
volumes.
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